000 03312Cam#a22004695i#4500
001 INGC-EBK-000281
003 AR-LpUFI
005 20220927105747.0
007 cr nn 008mamaa
008 131212s2014 gw | s |||| 0|eng d
020 _a9783319023625
024 7 _a10.1007/978-3-319-02362-5
_2doi
050 4 _aTJ210.2-211.495
050 4 _aT59.5
072 7 _aTJFM1
_2bicssc
072 7 _aTEC037000
_2bisacsh
072 7 _aTEC004000
_2bisacsh
245 1 0 _aSpatial Temporal Patterns for Action-Oriented Perception in Roving Robots II
_h[libro electrónico] : ;
_bAn Insect Brain Computational Model /
_cedited by Paolo Arena, Luca Patané.
260 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2014.
300 _axiv, 371 p. :
_bil.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aCognitive Systems Monographs,
_x1867-4925 ;
_v21
505 0 _aPart I Models of the insect brain: from Neurobiology to Computational Intelligence -- Part II Complex dynamics for internal representation and Locomotion control -- Part III Software/Hardware cognitive architectures -- Part IV Scenarios and experiments.
520 _aThis book presents the result of a joint effort from different European Institutions within the framework of the EU funded project called SPARK II, devoted to device an insect brain computational model, useful to be embedded into autonomous robotic agents.  Part I reports the biological background on Drosophila melanogaster with particular attention to the main centers which are used as building blocks for the implementation of the insect brain computational model.  Part II  reports the mathematical approach to model the Central Pattern Generator used for the gait generation in a six-legged robot. Also the Reaction-diffusion principles in non-linear lattices are exploited to develop a compact internal representation of a dynamically changing environment for behavioral planning. In Part III  a software/hardware framework, developed to integrate the insect brain computational model in a simulated/real robotic platform, is illustrated. The different robots used for the experiments are also described.  Moreover the problems related to the vision system were addressed proposing robust solutions for object identification and feature extraction. Part IV includes the relevant scenarios used in the experiments to test the capabilities of the insect brain-inspired architecture taking as comparison the biological case. Experimental results are finally reported,  whose multimedia can be found in the SPARK II web page: www.spark2.diees.unict.it.
650 0 _aEngineering.
_9259622
650 0 _aBioinformatics.
_9260231
650 0 _aComputational intelligence.
_9259845
650 0 _aRobotics.
_9259596
650 0 _aAutomation.
_9259787
650 2 4 _aComputational Biology
_9260232
700 1 _aArena, Paolo,
_eed.
_9260657
700 1 _aPatané, Luca,
_eed.
_9260658
776 0 8 _iPrinted edition:
_z9783319023618
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-02362-5
912 _aZDB-2-ENG
929 _aCOM
942 _cEBK
999 _aSKV
_c27709
_d27709