https://koha.ing.unlp.edu.ar/logo-sii.jpg
Imagen de Google Jackets

Knowledge-Based Driver Assistance Systems [libro electrónico] : ; Traffic Situation Description and Situation Feature Relevance / by Michael Huelsen.

Por: Tipo de material: TextoTextoDetalles de publicación: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2014.Descripción: xvii, 176 p. : ilTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9783658057503
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación LoC:
  • TA329-348
  • TA640-643
Recursos en línea:
Contenidos:
Introduction -- The Research Domain of this Thesis and its State of the Art -- Theoretical Foundations Relevant to this Thesis -- Situation Feature Relevance on Measurement Data -- Knowledge-Based Traffic Situation Description -- Relevance by Mutual Information on Ontology Features -- Conclusion.
Resumen: The comprehension of a traffic situation plays a major role in driving a vehicle. Interpretable information forms a basis for future projection, decision making and action performing, such as navigating, maneuvering and driving control. Michael Huelsen provides an ontology-based generic traffic situation description capable of supplying various advanced driver assistance systems with relevant information about the current traffic situation of a vehicle and its environment. These systems are enabled to perform reasonable actions and approach visionary goals such as injury and accident free driving, substantial assistance in arbitrary situations up to even autonomous driving.  Content Situation Feature Relevance on Vehicle Measurement Data Relevance of Historical Measurement Values Knowledge-Based Traffic Situation Description and Simulation Relevance by Mutual Information on Ontology Features Target Groups Researchers, lecturers and students in the fields of automotive engineering, mechatronics, computer science and artificial intelligence Engineers and developers in the automotive industry, specifically areas of driver assistance systems, vehicle control and mechatronics The Author Michael Huelsen completed his doctoral thesis in a cooperation between the Karlsruhe Institute of Technology (KIT) and the Robert Bosch GmbH. After working in automotive development he is now working in a leading position in purchasing and value engineering at a renowned company manufacturing electrical traction systems.
Tipo de ítem: Libro electrónico Lista(s) en las que aparece este ítem: Ebooks
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Introduction -- The Research Domain of this Thesis and its State of the Art -- Theoretical Foundations Relevant to this Thesis -- Situation Feature Relevance on Measurement Data -- Knowledge-Based Traffic Situation Description -- Relevance by Mutual Information on Ontology Features -- Conclusion.

The comprehension of a traffic situation plays a major role in driving a vehicle. Interpretable information forms a basis for future projection, decision making and action performing, such as navigating, maneuvering and driving control. Michael Huelsen provides an ontology-based generic traffic situation description capable of supplying various advanced driver assistance systems with relevant information about the current traffic situation of a vehicle and its environment. These systems are enabled to perform reasonable actions and approach visionary goals such as injury and accident free driving, substantial assistance in arbitrary situations up to even autonomous driving.  Content Situation Feature Relevance on Vehicle Measurement Data Relevance of Historical Measurement Values Knowledge-Based Traffic Situation Description and Simulation Relevance by Mutual Information on Ontology Features Target Groups Researchers, lecturers and students in the fields of automotive engineering, mechatronics, computer science and artificial intelligence Engineers and developers in the automotive industry, specifically areas of driver assistance systems, vehicle control and mechatronics The Author Michael Huelsen completed his doctoral thesis in a cooperation between the Karlsruhe Institute of Technology (KIT) and the Robert Bosch GmbH. After working in automotive development he is now working in a leading position in purchasing and value engineering at a renowned company manufacturing electrical traction systems.

No hay comentarios en este titulo.

para colocar un comentario.
BIBLIOTECA CENTRAL
    Calle 115 y 47 - (CP1900) La Plata
    Tel: (0221) 423-6689  int 118 -
    Email: bibcentral@ing.unlp.edu.ar
    Horario de atención: Lunes a Viernes de 8 a 19 hs..
    +54 2215900419

Con tecnología Koha