https://koha.ing.unlp.edu.ar/logo-sii.jpg
Imagen de Google Jackets

Learning Motor Skills [libro electrónico] : ; From Algorithms to Robot Experiments / by Jens Kober, Jan Peters.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Detalles de publicación: Cham : Springer International Publishing : Imprint: Springer, 2014.Descripción: xvi, 191 p. : ilTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9783319031941
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación LoC:
  • TJ210.2-211.495
  • T59.5
Recursos en línea:
Contenidos:
Reinforcement Learning in Robotics: A Survey -- Movement Templates for Learning of Hitting and Batting -- Policy Search for Motor Primitives in Robotics -- Reinforcement Learning to Adjust Parameterized Motor Primitives to New Situations -- Learning Prioritized Control of Motor Primitives.
Resumen: This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first authorâ_Ts doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award.
Tipo de ítem: Libro electrónico Lista(s) en las que aparece este ítem: Ebooks
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Reinforcement Learning in Robotics: A Survey -- Movement Templates for Learning of Hitting and Batting -- Policy Search for Motor Primitives in Robotics -- Reinforcement Learning to Adjust Parameterized Motor Primitives to New Situations -- Learning Prioritized Control of Motor Primitives.

This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first authorâ_Ts doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award.

No hay comentarios en este titulo.

para colocar un comentario.
BIBLIOTECA CENTRAL
    Calle 115 y 47 - (CP1900) La Plata
    Tel: (0221) 423-6689  int 118 -
    Email: bibcentral@ing.unlp.edu.ar
    Horario de atención: Lunes a Viernes de 8 a 19 hs..
    +54 2215900419

Con tecnología Koha