https://koha.ing.unlp.edu.ar/logo-sii.jpg
Imagen de Google Jackets

Support Vector Machines Applications [libro electrónico] / edited by Yunqian Ma, Guodong Guo.

Colaborador(es): Tipo de material: TextoTextoDetalles de publicación: Cham : Springer International Publishing : Imprint: Springer, 2014.Descripción: vii, 302 p. : ilTipo de contenido:
  • text
Tipo de medio:
  • computer
Tipo de soporte:
  • online resource
ISBN:
  • 9783319023007
Tema(s): Formatos físicos adicionales: Printed edition:: Sin títuloClasificación LoC:
  • TK5102.9
  • TA1637-1638
  • TK7882.S65
Recursos en línea:
Contenidos:
Augmented-SVM for gradient observations with application to learning multiple-attractor dynamics -- Multi-class Support Vector Machine -- Novel Inductive and Transductive Transfer Learning Approaches Based on Support Vector Learning -- Security Evaluation of Support Vector Machines in Adversarial Environments -- Application of SVMs to the Bag-of-features Modelâ_" A Kernel Perspective -- Support Vector Machines for Neuroimage Analysis: Interpretation from Discrimination -- Kernel Machines for Imbalanced Data Problem and the Use in Biomedical Applications -- Soft Biometrics from Face Images using Support Vector Machines.
Resumen: Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.
Tipo de ítem: Libro electrónico Lista(s) en las que aparece este ítem: Ebooks
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Augmented-SVM for gradient observations with application to learning multiple-attractor dynamics -- Multi-class Support Vector Machine -- Novel Inductive and Transductive Transfer Learning Approaches Based on Support Vector Learning -- Security Evaluation of Support Vector Machines in Adversarial Environments -- Application of SVMs to the Bag-of-features Modelâ_" A Kernel Perspective -- Support Vector Machines for Neuroimage Analysis: Interpretation from Discrimination -- Kernel Machines for Imbalanced Data Problem and the Use in Biomedical Applications -- Soft Biometrics from Face Images using Support Vector Machines.

Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.

No hay comentarios en este titulo.

para colocar un comentario.
BIBLIOTECA CENTRAL
    Calle 115 y 47 - (CP1900) La Plata
    Tel: (0221) 423-6689  int 118 -
    Email: bibcentral@ing.unlp.edu.ar
    Horario de atención: Lunes a Viernes de 8 a 19 hs..
    +54 2215900419

Con tecnología Koha